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Abstract-——Wall conduction effects on steady-state laminar flow heat-transfer experiments are examined,
and an analysis of heat transfer with axial conduction in the wall bounding a fluid in laminar flow is developed
to determine the effects of the conduction in the wall on heat transfer with Poiseuille—Couette flow between
parallel plates. The parameters that determine the relative importance of axial conduction are found to be
the Péclét number of the fluid, the thickness to length ratio of the wall and the parameter 8 = k,8,/k, L.
The Couette flow analysis and experiments that correspond to heat transfer with Couette flow are shown to
be in good agreement, and comparisons of the interfacial temperature distribution and local Nusselt
numbers obtained by accounting for axial conduction are made with the results determined by neglecting
axial conduction.
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dimensionless independent vari-
able;
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refers to a condition at the leading
edge;

refers to the mth eigenfunction or
eigenconstant or a mixed mean
temperature;

refers to the maximum velocity
for plane Poiseuille flow;

refers to the nth eigenfunction or
eigenconstant ;



0, refers to a condition at the solid—
fluid interface ;
w, refers to a constant wall boundary
condition ;
1, refers to the fluid phase;
2, refers to the solid phase (wall).
INTRODUCTION

IN THE design and analysis of heat exchange
equipment and in the interpretation of experi-
mental data, axial conduction in the wall bound-
ing a fluid is usually ignored, but it can have a
significant effect on the heat transfer and tem-
perature field in the fluid adjacent to the wall.
This is especially true in the thermal entrance
region. Although the problem is similar to
heat transfer in a composite body, the
phenomenon has been subjected to very little
analysis. In the most significant related paper
Perelman [1] calls this type of problem a
“conjugated” boundary value problem, and
he examined two problems of heat transfer to a
fluid flowing around a body containing internal
heat sources. In addition he considered the
asymptotic solutions to the types of integral
equations that occur in the analysis of such
conjugated problems. He treated the relatively
simple flow configurations of slip flow around a
body and laminar boundary layer flow over a
thin plate, but his work is an excellent summary
and analvsis of the basic problem. Sell and
Hudson [2] considered the effect of wall con-
duction on heat transfer to slug flow, and Rotem
[3] developed an approximation method for
determining the wall temperature profile and
the heat transfer coefficient for heat transfer to
a laminar boundary layer with conduction in
the wall. Rotem’s method, however, applies to
systems for which the wall boundary condition
is either approximately constant temperature or
approximately constant heat flux.

Schenk et al. [4, 5] and Sideman et al. [6]
studied a problem that is somewhat related to
the present problem. The former investigators
extended the Griitz problem for flow between
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parallel plates to include the effects of surface
resistance to heat transfer, and the latter
investigators extended and supplemented the
results of Schenk et al. by solving the problem
for both circular and flat conduits. The essential
difference between the present problem and the
Gritz problem with constant surface resistance
is that no a priori information about the surface
resistance is assumed here. Thus the problem
is similar to the class of conjugated boundary
value problems discussed by Perelman.

Recently Gill et al. [7] have shown how the
solutions for the temperature profile for single-
stream forced convection heat transfer problems
can be used to construct the temperature distri-
bution in the thermal entrance region of multi-
stream concurrent flow heat exchangers. This
approach, which will be used in the present
study, can be applied to problems involving a
fluid stream and a solid boundary for arbitrary
interfacial temperature or heat flux distribution.
Davis and Cooper [8], in studies of heat transfer
to thin liquid film flow, conjectured (from
analysis of their theoretical and experimental
results) that axial conduction substantially
affected their heat transfer results in the thermal
entrance region.

It is the purpose of this paper to show how
the effects of axial conduction in the wall can be
predicted from the solutions for the temperature
fields in the liquid phase and solid wall considered
separately and to use the analysis to interpret
the results of Davis and Cooper. Although the
analysis is developed for the problem of
Poiseuille-Couette flow between parallel planes
with no heat generation in the wall, it can readily
be extended to other geometries, and heat
generation in the wall can be treated.

PROBLEM FORMULATION
Consider laminar flow between parallel planes,
shown schematically in Fig. 1. Ifthe upper surface
of the fluid moves with velocity U (either
because of motion of the solid boundary or
because of the shearing flow of a gas) and if a
pressure gradient exists, the velocity profile
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for this combined Poiseuille-Couette flow can
be written as

U = dupe(SC — %) 1)
where S = 1 + U/4u,,,, and u,,,, is the maximum
velocity for a flow with the same pressure
gradient but with stationary boundaries
(Poiseuille flow). The velocity profile given by
equation (1), then, reduces to that for Poiseuille
flow when U = 0 and to that for Couette flow
in the absence of a pressure gradient.

u=u(y)§ t}' Fluid 8:!

i § Heated block 3,
! L
Fi1G. 1. The system under consideration.

—w{f

For the experimental conditions of interest
in the present work axial conduction in the
fluid (Hennecke [9] has shown that for Hagen—
Poiseuille flow axial conduction is important
only for small Péclét numbers) and viscous
heat dissipation can be ignored and the fluid
properties are constant; therefore the tem-
perature field in the fluid is described by

oT, 8T,
“ox T oy?*’

@

The subscript 1 will be used to denote the tem-
perature and properties of the fluid phase, and
the subscript 2 will refer to the wall.

For two-dimensional steady state conduction
in an isotropic medium with no internal heat
generation the temperature field in the wall
bounding the flow is given by

Wn+ﬁu
ox? ' dy?

The assumptions apply to a wall heated from
the lower side by some external source (a con-
densing vapor, electrical source, etc.), but the
problem involving heat generation in the wall

= 0. 3)
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also can be treated by the method discussed here
[replacing equation (3) by the appropriate
energy equation, of course].

Equations (2) and (3) are coupled by con-

Aad al o BT S

tinuity conditions at the solid—fluid interface:
Ti(x,0) = Ty(x, 0) = Ty(x) C)]
and

aT, T,

( 0+)—k2 (xO ). (5)
Numerous combinations of boundary con-
ditions at the upper surface of the fluid and the
lower surface of the wall are of some interest,
but to illustrate the method of analysis and to
compare the analysis with available experi-
mental data we shall consider the following
boundary conditions in addition to the fluid-
solid interfacial condition :

(i) Ty, y) = T, = constant (the thermal
entry condmon)
(i) Ti(x,éy) =T,
(i) 72(0,) =0
(w) (L M=
) 6T2 X, —0;) = — %(a constant heat flux
2
at the lower surface)

The continuity conditions at the fluid-solid
interface, equations (4) and (5), represent the
other boundary conditions that must be satisfied.

These boundary conditions are consistent
with the experimental facility of Davis and
Cooper, which is discussed below. Numerous
other combinations of boundary conditions
could be involved experimentally, but other
boundary conditions may be treated merely as
variations on the theme developed here.

Since it will be shown that the solution for
the coupled equations, (2) and (3), can be written
in terms of the solutions for the temperature
fields in the individual phases considered separ-
ately, the application of the method to other
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boundary conditions is readily carried out.
To this end we shall first obtain solutions to the
appropriate differential equations for an
arbitrary unknown interfacial temperature distri-
bution by using the Duhamel theorem. Then,
the interfacial condition that satisfies the partial
differential equations and the boundary con-
ditions is obtained by applying the continuity
conditions.

THE FLUID PHASE TEMPERATURE FIELD

The temperature field in the fluid phase for a
variable interfacial temperature can be written
in terms of the solution for a constant interfacial
condition by applying the extended Duhamel
theorem discussed by Bartels and Churchill [10].
It is the interfacial temperature distribution that
is of interest, so first we solve the problem with a
constant temperature boundary condition and
then generalize this to the solution for arbitrary
interfacial temperature. For a constant wall
temperature the differential equation is

ov

.y _ o*V
6x-d

6
e (6)
where u = u(y), given by equation (1), V= V(x, y),
and the boundary conditions are:

@ Vo,y=T,
(b) V(x,0,) =T,
{c) V(x,0) = T, = constant.

Because this problem is closely related to the
well-known Gritz problem and its various
extensions there is little need to present a
detailed account of its solution, but a brief
recapitulation of the solution is in order here
because the analysis represents a more general
form of the problem. The Grétz problem appears
as the special case when S = 1 in the velocity
profile expression.

Substituting equation (1) into equation (6)
and introducing the dimensionless variables

_v-T)
T, - Ty

X

o =5Pds <%

=2
C—él, "
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where the Péclét number for the liquid is
defined by Pe = 4u,,,,5,/a, gives the dimension-
less equation

320 (SC~ %) a0
ar 8- o
The term (S — ) is introduced as a convenient

normalizing factor for the velocity distribution.
Equation (7) was solved in the usual way to give

(7

o0 =1-C+ 3 AL,0exp(~in. (®)

The eigenvalues 4, and the eigenfunctions¥,({)
satisfy

&y (8¢ - 1%
4 )2 Z
PTG
The solution of equation (9) is conveniently

written in terms of the confluent hypergeometric
function to give

Y =0 9

Tn(C) = €Xp ("_ %') [Kl,,M(am %’ Zn)

+ KZ,.Z;%M(an + %, %a Zn)] (10)
where
s)Z S2A
oA * —_—— = - LS 1
Zy ln(l 5] @ TR
and
A
A% -
"S-

The constants K, and K, are obtained by
applying the boundary conditions, and the
eigenconstants 4, in equation (8) are obtained
by applying the thermal entry condition in the
usual way. Epton has tabulated the eigen-
constants and eigenvalues for this problem for
various values of the parameter S [11].

Of particular interest to the authors is the
problem involving Couette flow of the fluid
phase. In this case equation (1) reduces to a
linear profile, and the solution of equation (6)
can be obtained by considering the asymptotic
solution of equation (7) as S — co. The solution
is of the same form as equation (8), but 7 ()
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can be written either in terms of the Airey
function or the Bessel function. The Bessel
function solution is

P70 = R,G40 (11
and the eigenvalues satisfy
Jy34) = 0. (12)

Using the above results the solution for the
constant interfacial temperature problem
becomes

Vix,y) =T, +(To — T)

y y
X [1 '—6—1' + Z A,,T,,(61>

n=1

a2y
x exp (— 5 P’: )] (13)

The solution for the problem with a variable
interfacial temperature can be written by apply-
ing Duhamel’s theorem to the above solution
to give

a X
Tix,y =T + Eij {['To(x’) - T]
0

x {1 —l+z,4,,w,,<-y—>
1 - 2

x exp [—&,(x — x)] }} ax'  (14)

where ¢, = 1*2/5,Pe
g, = A2/5,Pe).
The heat flux at the interface is given by

(for Couette flow

AP ALY |
—ky —5;(3@0 )= nggf{[n(x) - T]
[\]
x {1 — Z A¥exp[—e{x — x')]}} dx’

n=1
(15)
where Ay = A,¥%,(0)
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and the prime indicates differentiation with
respect to y.

THE SOLID PHASE TEMPERATURE FIELD
The temperature distribution in the wall can
be obtained by solving equation (3) subject to
boundary conditions (iii), (iv), (v) and

L(x,0) = Ty(x) = f(x). (16)

If Ty(x) is assumed to be known, which it
obviously is not at this point, then the solution
can be obtained by the classical methods
discussed by Carslaw and Jaeger [12] to give

nmw=-%y
2

2 . coshy,(y + 3,)
- C, ——————=
+ L z " coshy,d, COS Ym

m=1

17

where the Fourier coefficients C,, are given by

L
C,, = | Ty(x) cos y,x dx (18)
4]
and the eigenvalues y,, are
mn
=-— 19
m ="F (19)
In this case the interfacial flux becomes
T
—k2 'b;(x: 0) = 4w
2k, &
- ——I:Z Y. C,yntanhy,d, cosy,x. (20)
m=1

Equations (14) and (17), the solutions for the
temperature distribution in the liquid and solid
phases respectively, both contain the unknown
To(x), and to complete the solution one must
now find this interfacial temperature distri-
bution.

Although the solid phase temperature distri-
bution is developed above for a finite length L
because of the application in mind, it is possible
to modify the analysis for a heated region of
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mnfinite length by using a Green’s fonction or
Fourier transform approach.

THE CONJUGATED PROBLEM SOLUTION
By applying the continuity condition for the
heat flux, equation (5), and multiplying the
resulting equation by &,/k, we obtain equation
{21), which is the integro-differential equation
that must be solved to obtain the interfacial
temperature distribution,

o f =
2w - - § arewi-aie
0

- 1 ' Qw‘sl
x)] }d e

~28 Y Coymtany,§,co8 y,x.  (21)

m=1

The parameter f is the ratio of thermal resistance
across the liquid film transversely to that in the
solid over its entire axial length, and it is given by

ﬁ = k251/kiL*

Qualitatively, when S is small axial conduction
has little effect on the interfacial temperature
distribution compared with the solution for a
constant specified wall flux.

Equation (21) is conveniently solved by
assuming a temperature distribution at the
interface of the form

To(x) = 7o + 11X + 17 + 13X + ... (22)
The substitution of equation (22) in equation
(21) followed by the appropriate integration and
differentiation leads to an equation of the form

To@olX) + T101(x) + T20(x) + ...

(23)

where

Polx) = —
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¢1(x)=~x+ZA*

2/3LZ (-1 :mﬂtanh TmO2 COS VX

¢2(x) = JC2 + Zl A:(x - U)")/E"
4812 -1y
- w’(i( gm)-— tanh 7,0, COS V,,X
b m
m=1

Pix) = —x/ + Z A"‘réll f(x’}f exp [ —e,(x
@ 1

— x)}dx" — 28 Z(j x/ cos y,,x dx)
4]
x5

) tanh y,.6, cosy,x
and
W, = [1 - exp(*anx)lfgn'

A collocation technique was used to determine
the coefficients zq, 7, 73, . . . to obtain the inter-
facial temperature distribution, ie. by writing
equation (23) for various values of x, say x;, x,,
X3, ..., a system of linear simultaneous equa-
tions is obtained which can be solved to evaluate
the coefficients.

EXPERIMENTS

Because experimental data are available for a
system that conforms to the phenomenon and
boundary conditions considered above it is
possible to compare the analysis with the
experimental data. Although the experimental
equipment and techniques are reported else-
where [8, 13], a brief discussion is in order here.

Davis and Cooper studied the flow of a liquid
film dragged over a heated surface by a con-
current gas or vapor flow, and they made heat-
transfer measurements in the thermal entrance
region. If the film flow is not unstable the
asymptotic case of Couette flow is closely
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approximated, and many of the experiments
reported involved smooth film flow.

The experimental facility, shown in [8], con-
sisted of a 20 ft long wind tunnel, 10 in. wide
and 1 in. high. A liquid film was introduced
near the air inlet through perforations in the
bottom of the tunnel, and a 2 ft long heat-
transfer plate, consisting of a 1 in. thick copper
block extending the width of the tumnel, was
installed about 16 ft from the air inlet. The heat-
transfer test section was sufficiently far down-
stream from the air and water inlets to insure
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thermocouples were installed in the copper
block at eight axial stations. From information
on the vertical temperature profile in the block
at each station the surface temperature was
obtained by extrapolation. The various fluid
dynamics parameters required (liquid surface
velocity, film thickness, entry temperature, etc.)
were measured as discussed in [8]. Table 1is a
summary of the significant parameters involved.
It is to be noted that the parameter B is of the
order of one, suggesting that axial conduction
is important.

Table 1. The experimental parameters

d Pe 9 T

Run B L/é,Pe (ftl) (Btu/hft?) CF)
14 0942 0234 000330 2590 4680 657
17 1306 0-473 000237 1780 5020 619
19 0-765 0-142 0-00402 3510 8890 61-3
22 0970 0251 000317 2520 8940 610
26 1205 0-508 000255 1540 8950 635
27 1312 0-555 0-00236 1520 9030 64-1

é,/L = 0-04167

fully developed flow in the downstream portion RESULTS

of the wind tunnel. Electrical strip heaters,
attached to the bottom of the copper plate, were
used to supply heat to the system. The power to
the 500 W strip heaters, wired in banks of four
heaters per bank, was controlled by means of
variable transformers and was measured with
calibrated voltmeters and ammeters. The up-
stream and downstream edges of the block were
insulated and butted against Plexiglass, and a
backup heater was installed beneath the primary
heaters to minimize heat loss. Both constant
heat flux, corresponding to boundary condition
(v.), and constant wall temperature experiments
were conducted, but because the constant heat
flux runs showed the more pronounced effects
of axial conduction in the block, they are of
particular interest here.

To obtain the wall temperature (interfacial
temperature) and the local heat flux eight sets of

To elucidate quantitatively the role of the
various parameters influencing the importance
of axial conduction in the wall a parametric
study was carried out on the digital computer.
Inspection of equation (21) indicates that the
Péclét number of the liquid, Pe, the dimension-
less parameter § and the ratio d,/L determine
the relative importance of the axial conduction.
Since heat will flow most rapidly along the path
of least resistance, qualitatively we can expect
axial conduction in the copper block to be
diminished by anything which contributes to
increasing the rate of heat transfer transversely
across the block and the flow. Consequently
since B is the ratio of the transverse resistance in
the flow to the axial resistance in the block,
increasing this parameter will increase the
importance of axial conduction in the block.
Increasing the Péclét number decreases the
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thermal resistance across the flow and therefore
this decreases the effect of axial conduction.
Lastly, ,/L can be viewed as the ratio of the
transverse to axial thermal resistance in the
block and therefore increasing this parameter
should increase the importance of axial con-
duction. Conversely, it follows that an increase
in axial conduction will detract from transverse
rates of transfer and is therefore usually a
deleterious effect.

Figures 2 and 3 show the effect on the inter-
facial temperature distribution of varying the
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Péciét number for f =01 and B = 10, res-
pectively for a fairly large length to thickness
ratio {100:1). The former figure shows that as
the Péclét number increases the effects of axial
conduction in the wall become insignificant, and
the limiting interfacial temperature profile pre-
dicted for a constant wall heat flux is approached
When B is large, however, axial conduction in
the wall greatly effects the interfacial tempera-
ture distribution and the heat flux through the
wall. Figure 3 shows that at even relatively large
values of the Péclét number the constant heat

To~Ts
0 8174,
[+ -
) [e]

o
@

a7

¢33

05

Dimensoiniess temperature, 8,
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L 1i..1

e o —

e e e T —
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Pe= 400

Pe = 1000

Pe = 2000

Pe = 4000

No axial conduction
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1
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Dimensiontess

i
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distonce,

Fi1G. 2. The effect of axial conduction in the wall on the interfacial
temperature profile for small  and for various Péclét numbers,
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)

o]

Y g Bk
W

perature, 8=

Dimensionless

i

e Pg =400
—---—  Pe ={000
- Pe 22000
“m== Pg =4000
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B=10:0, §,/L =00l

{I. H

Dimension

i
02 03
less distance, &= x/8) Pe

FiG. 3. The effect of axial conduction in the wall on the interfacial
temperature profile for large f and for various Péclét numbers.
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flux temperature distribution is not attained.
The curve for a Péclét number of 400 in Fig. 3
approaches the curve for no axial conduction
only for values of the dimensionless distance
from the leading edge that are much greater than
the range of the figure. For a specified Péclét
number and # the thickness to length ratio of
the wall has the effect on the interfacial tempera-
ture shown in Fig. 4. As expected, axial con-
duction in the wall is less significant as the wall
thickness decreases.
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Equation (22) was found to be a rapidly con-
vergent series, for the order of the polynomial
selected had no apparent effect on the solution
for polynomials of second order or greater, but
the results presented here are for third order
polynomials.

Figures 5 and 6 compare the analysis neg-
lecting axial conduction in the wall, the present
analysis and the experimental data of Davis and
Cooper. The effect of axial conduction in the
wall is to increase the temperature near the

S 10

10 - -
Mg oo DT T -

-

q? b

¢ OB

2 L

g | -

A B8=1-0, Pe=2000

€ -

2 e t 82/L =001

] i — — 82/ =0-05

s g - 8,/L =040

g N —=— 82/L =020

§ o4l No axial conduction

0:1]1||J[Il((l(l|l|l||l
K 0z 03 0-4

0 01

Dimensionless distonce, £= 473, Pe

F1G, 4, The effect of axial conduction in the wall on the interfacial
temperature profile for various values of §,/L.

In the calculations for Figs. 24 and those that
follow it was found that the collocation tech-
niques used to obtain the coefficients of equation
(21) was economical of computer time, but the
coefficients and the resulting interfacial tempera-
ture profiles depend slightly on the collocation
points selected for the evaluation of the ¢(x)
functions. The curves shown in Figs, 2-6 should
actually be considered to be narrow bands, the
maximum and minimum deviations from the
lines shown being approximately 2 per cent.
Within these limits the collation points could
be varied considerably, for the calculations were
primarily affected by the collocation point
nearest the leading edge.

leading edge over that predicted for a constant
heat flux at the interface, and to lower the
temperature slightly in the downstream portion.
Differences between the analysis and experi-
mental data can be attributed to two effects.
First, there are experimental errors involved as
indicated in [8] and second, the analysis does
not account for small heat losses through the
ends of the block. The results of the present
analysis are in reasonably good agreement with
the measured interfacial temperatures. Some-
what poorer agreement is obtained in a com-
parison of the predicted and measured local
Nusselt numbers, however, for the Nusselt
numbers calculated from the experimental data
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are more subject to errors in the measurements
than are the dimensionless temperature profiles.
Figure 7isa comparison among the experimental
results and the Nusselt numbers predicted by

3«0H

Negtecting oxial conduction

Analysis

Y Run Experiment
v

Nusselt number, Mv

o 0-05 010 015
Dimensionless distance, £

020 0-25

FiG. 7. A comparison of predicted Nusselt numbers with
experimental data.

neglecting and by accounting for the axial
conduction. The Nusselt number for the thin

film flow may be defined by
5, T
Ny = — ay y=0 __ ‘1051 (24)

(TO - Tm) - kl(T;) - Tm)

where the subscript m refers to the mixed mean
temperature and ¢, is the local heat flux at the
solid—fluid interface. When a constant heat flux,
40 = q,, = constant, is involved, i.e. negligible
axial conduction, the Nusselt number can be
written in terms of the appropriate dimension-
less temperature for that case, 6 = (T — Te)/
(9uwd1/ky), to give

Nu = 1/0, — 6,,). (25)

The effect uf the axial conduction, shown in Fig.
7, is to lower the Nusselt numbers relative to
those predicted for a constant heat flux at the
solid—fluid interface. For the relatively short
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heat-transfer section of Davis and Cooper the
asymptotic value of the Nusselt number of 1-5
was not attained.

CONCLUSIONS

Axial conduction in the wall of a heat-
transfer apparatus can significantly affect the
temperature field in the fluid phase and lower
the Nusselt number associated with the heat
transfer. The Péclét number of the fluid, Pe, the
thickness to length ratio of the wall, ,/L, and the
dimensionless group of variables, § = k,6,/k,L,
are the important parameters in determining
the effects of the axial conduction. Increasing B
and J,/L increases the importance of axial
conduction whereas increasing Pe decreases it.

The analysis of axial conduction in the wall
developed above and applied to the system
studied by Davis and Cooper shows that the
experimental deviations of the wall temperature
profile from the profile predicted for the
constant heat flux boundary condition are in
large measure due to axial conduction in the
test section wall.
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LES EFFETS DE LA CONDUCTION AXIALE DANS LA PAROI SUR LE TRANSPORT DE
CHALFUR AVEC UN ECOULEMENT LAMINAIRE

Résumé—Les effets de la conduction de la parot sur des expériences de transport de chaleur en écoulement
laminaire et en régime permanent sont examinés, et une analyse du transport de chaleur avec conduction
axiale dans la paroi limitant un fluide en écoulement laminaire est élaborée pour déterminer les effets de la
conduction dans la paroi sur le transport de chaleur avec un écoulement de Poiseuille-Couette entre des
plaques paralléles. Les paramétres qui déterminent Vimportance relative de la conduction axiak sont le
nombre de Péclet du fluide, le rapport épaisseur sur longueur de la paroi et le paramétre — K,6,/k, L.
L’analyse de Pécoulement de Couette et les expériences qui correspondent au transport de chaleur avec
Vécoulement de Couette sont en bon accord, et la distribution de température interfaciale et les nombres
de Nusselt locaux obtenus en tenant compte de la conduction axiale sont comparés avec les résultats
déterminés en négligeant la conduction axiale.

DER EINFLUSS ACHSIALER WANDBEDINGUNGEN AUF DEN
WARMEUBERGANG BEI LAMINARSTROMUNG

Zusammenfassung—Es wird der Einfluss der Wirmeleitung in der Wand auf die Versuche mit stationfirem
‘Wirmelibsrgang bei laminarer Stromung untersucht. Es wird eine Berechnungsmethode fiir den Wiarme-
ishergang mit axialer Leitung in den Winden, die eine laminar strémende Fliissigkeit begrenzen, entwickelt,
um den Einfluss der Leitung in der Wand auf den Wirmetibergang bei Poiseuille-Couette-Stromung
zwischen parallelen Platten zu bestimmen. Als Parameter, welche die relative Bedeutung der axialen Leitung
ausdriicken, wurden die Peclet-Zahl der Fliissigkeit, das Verhiltnis der Dicke zur Linge der Wand und der
Parameter K, §,/k,L gefunden. Die Berechnungsmethode der Couette-Stromung und die Versuche, die
dem Wirmeiibergang bei Couette-Strdmung entsprechen, zeigen gute Ubereinstimmung,

Die Temperaturverteilung zwischen den Winden und die lokalen Nusselt-Zahlen bei Beriicksichtigung
der axialen Leitung werden verglichen mit Ergebnissen bei denen die axiale Leitung vernachldssigt wurde.

BAWAHUE OCEROTO VCIOBUA B CTEHKE HA TEINIOOBMEH B
JORAJPHOM HOTOHE
ARHOTANUA—IHCIEPHMEHTSIBHO  HOCACAYIOTCA  BIARAHUA TENUIOHPOBOAHOCTH CTEHRYE HA
CTANMOHAPHBIE TeNO00Men NPH JAMHHAPHOM TeveHun, A Onpegenenus BIAWAHUA TN~
IPOBOJHOCTH B CTEHKE HA TeNJ000MeH NMpU HAXUMAM IyasefJeBCKOTO TEYEHMA W Te4eHUA
KyaTTa MeWAY DapaiielbHbMMU TLAGCTHHAMN AHAIMBHPYETCH TENIoofMen TpW HAIHYHM
AKCHATBHOTO KOHIYKTMBHOIO TEIOBOTO MOTOKA TONIOTPOBOAHOCTA B CTEHHE, OIPAHMUM-
BAlOIEl NaMURApHBI HOTOR mufrocTH, HaliMeno, 4To nmapaMeTpaMiu, ONPEeXeNsIOUDIMK

OTHOCHTEIBHOE RINAHUNE JAKCHAIBHOTO

TeHI0BOTO

DOTOKA 83 CHeT TenJonpoBOoaHoCTH

spamoTen uuenp [lewne A8 MUAKOCTH, OTHOMCHNE TORHIMEN CTeRKN K ef ANHHES B Tapaverp

= K38;/K,L. Tloxasanc, 40 TEOPSTHUECKNE JaHAME MO TeTA000Meny B HYDTTOBCKOM HOTOKE

XOPOUIO COPNACYIOTCS © DRCTIEPUMEHTANGHBMM. JlauHpie NO DACHPEencHNIs TeMOepaTypul

B ofxacT¥ Mewdazaof rpannud H AR A0KAnbHHX "meen Hyccempra ¢ yuerom Tenaonpo-

BOXHOCTH CTEHKH CPABHUBAWTCA ¢ PE3YIHTATAMM, HONYUSHHLIMY §es yuera KOHAYKTHBHOTO
TEINIOBOTO NOTOKA B OCEBOM HATIPARINEHUM.



