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Abstract---Wall conduction effects on steady-state laminar flow heat+ransfer experiments are examined, 
and an analysis of heat transfer with axial conduction in the wall hounding a fluid in laminar flow is developed 
to determine the effects of the conduction in the wall on heat transfer with Poiseuille-Couette flow between 
parallel plates_ The parameters that determine the relative importance of axial conduction are found to be 
the PM& number of the fluid, the thickness to length ratio of the wall and the parameter p = k2SI/k,L. 
The Couette flow analysis and experiments that correspond to heat transfer with Couette flow are shown to 
be in good agreement, and comparisons of the interfacial temperature distribution and local Nusselt 
numbers obtained by accounting for axial conduction are made with the results determined by neglecting 

axial conduction. 

NOMENCLATURE 

parameter introduced in equation 
(10); 
eigenconstants ; 

Bessel functions ; 
thermal conductivity [Btu/h!I”F] ; 
eigenconstants ; 
heated length [ft] ; 
Kummer’s function ; 
P6&t number for the fluid phase ; 
heat flux [Btu/hft’] ; 
dimensionless parameter ; 
temperature [“F] ; 
velocities [ft/h or R/s] ; 
temperature ; 
distance from the leading edge ; 
distance from the wall ; 
independent variable in equation 

(10). 

Greek letters 

2 

thermal diRusivity [ft2/s] ; 
dimensionless parameter ; 
eigenvalue ; 
thickness [ft] ; 

parameter introduced in equation 

(14); 
dimensionless independent vari- 
able ; 
dimensionless independent vari- 
able ; 
dimensionless temperature ; 
eigenvalues ; 
dimensionless independent vari- 
able ; 
coefficients in equation (22); 
function introduced in equation 
(23) ; 
eigenfunction ; 
parameter in equation (23). 

refers to a condition at the leading 
edge ; 
refers to the mth eigenfunction or 
eigenconstant or a mixed mean 
temperature ; 
refers to the maximum velocity 
for plane Poiseuille flow ; 
refers to the tih eigenfunction or 
eigenconstant ; 

459 
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0, 

w, 

1, 
2, 

refers to a condition at the solid- 
fluid interface ; 
refers to a constant wall boundary 
condition ; 
refers to the fluid phase ; 
refers to the solid phase (wall). 

INTRODUCTION 

IN THE design and analysis of heat exchange 
equipment and in the interpretation of experi- 
mental data, axial conduction in the wall bound- 
ing a fluid is usually ignored, but it can have a 
significant effect on the heat transfer and tem- 
perature field in the fluid adjacent to the wall. 
This is especially true in the thermal entrance 
region. Although the problem is similar to 
heat transfer in a composite body, the 
phenomenon has been subjected to very little 
analysis. In the most significant related paper 
Perelman [l] calls this type of problem a 
“conjugated” boundary value problem, and 

he examined two problems of heat transfer to a 
fluid flowing around a body containing internal 
heat sources. In addition he considered the 
asymptotic solutions to the types of integral 
equations that occur in the analysis of such 
conjugated problems. He treated the relatively 
simple flow configurations of slip flow around a 
body and laminar boundary layer flow over a 
thin plate, but his work is an excellent summary 
and analysis of the basic problem. Sell and 
Hudson [2] considered the effect of wall con- 
duction on heat transfer to slug flow, and Rotem 
[3] developed an approximation method for 
determining the wall temperature profile and 
the heat transfer coefficient for heat transfer to 
a laminar boundary layer with conduction in 

the wall. Rotem’s method, however, applies to 
systems for which the wall boundary condition 
is either approximately constant temperature or 
approximately constant heat flux. 

Schenk et al. [4, 51 and Sideman et al. [6] 
studied a problem that is somewhat related to 
the present problem. The former investigators 
extended the GrItz problem for flow between 

parallel plates to include the effects of surface 
resistance to heat transfer, and the latter 
investigators extended and supplemented the 
results of Schenk et al. by solving the problem 
for both circular and flat conduits. The essential 
difference between the present problem and the 
G&z problem with constant surface resistance 
is that no a priori information about the surface 
resistance is assumed here. Thus the problem 
is similar to the class of conjugated boundary 
value problems discussed by Perelman. 

Recently Gill et al. [7] have shown how the 
solutions for the temperature profile for single- 
stream forced convection heat transfer problems 
can be used to construct the temperature distri- 
bution in the thermal entrance region of multi- 
stream concurrent flow heat exchangers. This 
approach, which will be used in the present 
study, can be applied to problems involving a 
fluid stream and a solid boundary for arbitrary 
interfacial temperature or heat flux distribution. 
Davis and Cooper [8], in studies of heat transfer 
to thin liquid film flow, conjectured (from 
analysis of their theoretical and experimental 
results) that axial conduction substantially 
affected their heat transfer results in the thermal 
entrance region. 

It is the purpose of this paper to show how 
the effects of axial conduction in the wall can be 
predicted from the solutions for the temperature 
fields in the liquid phase and solid wall considered 
separately and to use the analysis to interpret 
the results of Davis and Cooper. Although the 
analysis is developed for the problem of 
Poiseuille-Couette flow between parallel planes 
with no heat generation in the wall, it can readily 
be extended to other geometries, and heat 
generation in the wall can be treated. 

PROBLEM FORMULATION 

Consider laminar flow between parallel planes, 
shown schematically in Fig. 1. Ifthe upper surface 
of the fluid moves with velocity U (either 
because of motion of the solid boundary or 
because of the shearing flow of a gas) and if a 
pressure gradient exists, the velocity profile 
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for this combined Poiseuille-Couette flow can 
be written as 

n = 4%&r - G2) (1) 

where S = 1 + U/4u,,, and u,,, is the maximum 
velocity for a fiow with the same pressure 
gradient but with stationary boundaries 
(Poiseuille flow). The velocity profile given by 
equation (I), then, reduces to that for Poiseuille 
flow when U = 0 and to that for Couette flow 
in the absence of a pressure gradient. 

=jzzE=-~;-- 

L 
FIG. 1. The system under consideration. 

For the experimental conditions of interest 
in the present work axial conduction in the 
fluid (Hennecke [9] has shown that for Hagen- 
Poiseuille flow axial conduction is important 
only for small P&let numbers) and viscous 
heat dissipation can be ignored and the fluid 
properties are constant; therefore the tem- 
perature field in the fluid is described by 

aT, a?, 
nz=ayZ (2) 

The subscript 1 will be used to denote the tem- 
perature and properties of the fluid phase, and 
the subscript 2 will refer to the wall. 

For two-dimensional steady state conduction 
in an isotropic medium with no internal heat 
generation the temperature field in the wall 
bounding the flow is given by 

8% + 82% = o 

ax2 ay” * 
The assumptions apply to a wall heated from 
the lower side by some external source (a con- 
densing vapor, electrical source, etc.), but the 
problem involving heat generation in the wall 

also can be treated by the method discussed here 
[replacing equation (3) by the appropriate 
energy equation, of course]. 

Equations (2) and (3) are coupled by con- 
tinuity conditions at the solid-fluid interface : 

and 

T,@, 0) = 72x, 0) = T,(x) (4) 

k aT1 +x,0+) = k2!30-). (5) 

Numerous combinations of boundary con- 
ditions at the upper surface of the fluid and the 
lower surface of the wall are of some interest, 
but to illustrate the method of analysis and to 
compare the analysis with available experi- 
mental data we shall consider the following 
boundary conditions in addition to the fluid- 
solid interfacial condition : 

(i) Tl(O, y) = T, = constant (the thermal 
entry condition) 

(ii) T,(x, 6,) = T, 

(iii) z (0, y) = 0 

(iv) !$(I+ y) = 0 

- 6,) = - ?(a constant heat flux 
2 

at the lower surface) 

The continuity conditions at the fluid-solid 
interface, equations (4) and (5), represent the 
other boundary conditions that must be satisfied. 

These boundary conditions are consistent 
with the experimental facility of Davis and 
Cooper, which is discussed below. Numerous 
other combinations of boundary conditions 
could be involved experimentally, but other 
boundary conditions may be treated merely as 
variations on the theme developed here. 

Since it will be shown that the solution for 
the coupled equations, (2) and (3), can be written 
in terms of the solutions for the temperature 
fields in the individual phases considered separ- 
ately, the application of the method to other 



462 E. JAMES DAVIS and WILLIAM N. GILL 

boundary conditions is readily carried out. 
To this end we shall first obtain solutions to the 
appropriate differential equations for an 
arbitrary unknown interfacial temperature distri- 
bution by using the Duhamel theorem. Then, 
the interfacial condition that satisfies the partial 
differential equations and the boundary con- 
ditions is obtained by applying the continuity 
conditions. 

THE FLUID PHASE TEMPERATURE FIELD 

The temperature field in the fluid phase for a 
variable interfacial temperature can be written 
in terms of the solution for a constant interfacial 
condition by applying the extended Duhamel 
theorem discussed by Bartels and Churchill [lo]. 
It is the interfacial temperature distribution that 
is of interest, so lirst we solve the problem with a 
constant temperature boundary condition and 
then generalize this to the solution for arbitrary 
interfacial temperature. For a constant wall 
temperature the differential equation is 

where the P&let number for the liquid is 
defined by Pe = 4u,,,6i/o(, gives the dimension- 
less equation 

a28 (S[ - 52, 88 _=----- 
aj2 r--- (S - 3) ?q 

The term (S - $) is introduced as a convenient 
normalizing factor for the velocity distribution. 
Equation (7) was solved in the usual way to give 

e(~, 0 = 1 - 5 + “Cl -%yY,(O exp (-&M. (81 

The eigenvalues ,J and the eigenfunctionsY,([) 
satisfy 

d2Y 

F 

+ A2 (SC - i2) lp = 0 

--(Fq- . 
(9) 

The solution of equation (9) is conveniently 
written in terms of the confluent hypergeometric 
function to give 

\ I 

(6) + ~*,z$w% + $3 2, .%)I (10) 

where 

where u = u(y), given by equation (I), V = V( X, y), S1* 
and the boundary conditions are : ~ a, z - + + $, 

(4 VO, Y) = T, and 

(b) Vx, 6,) = T, 
(c) V(x, 0) = r, = constant. 

Because this problem is closely related to the 
well-known Gratz problem and its various 
extensions there is little need to present a 
detailed account of its solution, but a brief 
recapitulation of the solution is in order here 
because the analysis represents a more general 
form of the problem. The Grltz problem appears 
as the special case when S = 1 in the velocity 
profile expression. 

Substituting equation (1) into equation (6) 
and introducing the dimensionless variables 

The constants Kin and K,” are obtained by 
applying the boundary conditions, and the 
eigenconstants A, in equation (8) are obtained 
by applying the thermal entry condition in the 
usual way. Epton has tabulated the eigen- 
constants and eigenvalues for this problem for 
various values of the parameter S [ 111. 

Of particular interest to the authors is the 
problem involving Couette flow of the fluid 
phase. In this case equation (1) reduces to a 
linear profile, and the solution of equation (6) 
can be obtained by considering the asymptotic 
solution of equation (7) as S -+ co. The solution 
is of the same form as equation (a), but Y,(i) 
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can be written either in terms of the Airey 
function or the Bessel function. The Bessel 
function solution is 

‘p,(r) = WJ,@P) (11) 

and the eigenvalues satisfy 

J,(%) = 0. (12) 

Using the above results the solution for the 
constant interfacial temperature problem 
becomes 

W, Y) = T, + (To - T,) 

Px 
x exp ( >3 -n 

6,Pe (13) 

The solution for the problem with a variable 
interfacial temperature can be written by apply- 
ing Duhamel’s theorem to the above solution 
to give 

x exp [ -E,(x - x’)]} 
1 

dx’ (14) 

where E, = &f2/S,Pe (for Couette flow 
E, = A,‘/& Pe). 

The heat flux at the interface is given by 

x 

-kl $(x,0+) = 2; [T,(x’) - T,] 
1 J-I 0 

m 

x (1 - c A,* exp [ - E,(X - x’)] } dx’ 

II=1 

(15) 
where A,* = A,?;(O) 

and the prime indicates differentiation with 
respect to y. 

THE SOLID PHASE TEMPERATURE FIELD 

The temperature distribution in the wall can 
be obtained by solving equation (3) subject to 
boundary conditions (iii), (iv), (v) and 

Wx, 0) = T,(x) =f(x). (I@ 

If T,(x) is assumed to be known, which it 
obviously is not at this point, then the solution 
can be obtained by the classical methods 
discussed by Carslaw and Jaeger [12] to give 

Tz(x,y) = - Fy 
2 

m 

cos y&x (17) 

m=l 

where the Fourier coefficients C,,, are given by 

C, = 5 T,(x) cos y,,,x dx (18) 
0 

and the eigenvalues y,,, are 

Y”=y. 

In this case the interfacial flux becomes 

-kz 5(x. 0) = 4, 

- $f z C,,,y,,, tanh y,,,s2 cos y,,,x. (20) 
m-l 

Equations (14) and (17), the solutions for the 
temperature distribution in the liquid and solid 
phases respectively, both contain the unknown 
T,(x), and to complete the solution one must 
now find this interfacial temperature distri- 
bution. 

Although the solid phase temperature distri- 
bution is developed above for a finite length L 
because of the application in mind, it is possible 
to modify the analysis for a heated region of 
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infinite length by using a Green’s function or 
Fourier transform approach. 

THE CONJUGATED PROBLEM SOLUTION 

By applying the continuity condition for the 
heat flux, equation (51, and m~tiplying the 
resulting equation by 6,/k, we obtain equation 
(21), which is the integro-differential equation 
that must be solved to obtain the interfacial 
temperature distribution, 

* 

si 
[5(x’) - T,] (1 - f A,*exp [--8,(x 

n=1 
0 

- V f Gym tan Y~~~COS ~4. (21) 
??I=1 

The parameter p is the ratio of thermal resistance 
across the liquid film transversely to that in the 
solid over its entire axial length and it is given by 

Qualitatively, when #I is small axial conduction 
has little effect on the inter-facial temperature 
distribution compared with the solution for a 
constant specified wall ff ux. 

Equation (21) is conveniently solved by 
assuming a temperature distribution at the 
interface of the form 

T*(x) = to + X*X -I- T& + r$ i- . . . . (22) 

The substitution of equation (22) in equation 
(21) followed by the appropriate integration and 
differentiation leads to an equation of the form 

4Jl 
= T,#oW - -jy- (23) 

I 

where 

Mx) = - 1 + mz, AX exp ( -E,x) 

2pL m -__ 
c 

U-1)” - 11 ___-.-- tanh y,6, cos Y,,,.Y 
7c m 

m=l 

ch,w = - x2 + f A;(x - %I/% 
n=l 

4pc m (-1)” --- 
c 

-- - tanh yM& cos y=x 
n: m 

m=l 

cp@) = 
?I=1 

- x’)]dx’ - 2/32( j.:..,?..., 

m=1 0 

and 
x q, tanh ymSz cosy,x 

W,== 11 - exp ~-GWE,. 

A collocation technique was used to determine 
the coefficients zo, rl, r2, . . . to obtain the inter- 
facial temperature distribution, i.e. by writing 
equation (23) for various values of x, say x1, x2, 
x3,..., a system of linear simultaneous equa- 
tions is obtained which can be solved to evaluate 
the coefficients. 

EXPERIMENTS 

Because experiments data are available for a 
system that conforms to the phenomenon and 
boundary conditions considered above it is 
possible to compare the analysis with the 
experimental data. Although the experimental 
equipment and techniques are reported else- 
where [S, 133, a brief discussion is in order here. 

Davis and Cooper studied the flow of a liquid 
tilm dragged over a heated surface by a con- 
current gas or vapor flow, and they made heat- 
transfer measurements in the thermal entrance 
region. If the film flow is not unstable the 
asymptotic case of Couette flow is closely 
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approximated, and many of the experiments 
reported involved smooth film flow. 

The experimental facility, shown in [8], con- 
sisted of a 20 ft long wind tunnel, 10 in. wide 
and 1 in. high. A liquid film was introduced 
near the air inlet through perforations in the 
bottom of the tunnel, and a 2 ft long heat- 
transfer plate, consisting of a 1 in. thick copper 
block extending the width of the tunnel, was 
installed about 16 ft from the air inlet. The heat- 
transfer test section was sufficiently far down- 
stream from the air and water inlets to insure 

thermocouples were installed in the copper 
block at eight axial stations. From information 
on the vertical temperature profile in the block 
at each station the surface temperature was 
obtained by extrapolation. The various fluid 
dynamics parameters required (liquid surface 
velocity, film thickness, entry temperature, etc.) 
were measured as discussed in [8]. Table 1 is a 
summary of the significant parameters involved. 
It is to be noted that the parameter /I is of the 
order of one, suggesting that axial conduction 
is important. 

Table 1. The experimental parameters 

Run B L/S, Pe 
Pe 

(et&v) 
T. 
(“F) 

14 0942 O-234 000330 2590 4680 65.7 
17 1.306 O-473 0.00237 1780 5020 61.9 
19 @765 0.142 O-00402 3510 8890 61.3 
22 0.970 0.251 000317 2520 8940 61.0 
26 1.205 0.508 O-00255 1540 8950 63.5 
27 1.312 0.555 0.00236 1520 9030 64.1 

6,/L = 004167 

fully developed flow in the downstream portion 
of the wind tunnel. Electrical strip heaters, 
attached to the bottom of the copper plate, were 
used to supply heat to the system. The power to 
the 500 W strip heaters, wired in banks of four 
heaters per bank, was controlled by means of 
variable transformers and was measured with 
calibrated voltmeters and ammeters. The up- 
stream and downstream edges of the block were 
insulated and butted against Plexiglass, and a 
backup heater was installed beneath the primary 
heaters to minimize heat loss. Both constant 
heat flux, corresponding to boundary condition 
(v.), and constant wall temperature experiments 
were conducted, but because the constant heat 
flux runs showed the more pronounced effects 
of axial conduction in the block, they are of 
particular interest here. 

To obtain the wall temperature (interfacial 
temperature) and the local heat flux eight sets of 

RESULTS 

To elucidate quantitatively the role of the 
various parameters influencing the importance 
of axial conduction in the wali a parametric 
study was carried out on the digital computer. 
Inspection of equation (21) indicates that the 
P&St number of the liquid, Pe, the dimension- 
less parameter /I and the ratio 6,/L determine 
the relative importance of the axial conduction. 
Since heat will flow most rapidly along the path 
of least resistance, qualitatively we can expect 
axial conduction in the copper block to be 
diminished by anything which contributes to 
increasing the rate of heat transfer transversely 
across the block and the flow. Consequently 
since /I is the ratio of the transverse resistance in 
the flow to the axial resistance in the block, 
increasing this parameter will increase the 
importance of axial conduction in the block. 
Increasing the P&cl& number decreases the 
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thermal resistance across the flow and therefore 
this decreases the effect of axial conduction. 
Lastly, is2/L can be viewed as the ratio of the 
transverse to axial thermal resistance in the 
block and therefore increasing this parameter 
should increase the impo~ance of axial con- 
duction. Conversely, it follows that an increase 
in axial conduction will detract from transverse 
rates of transfer and is therefore usually a 
deleterious effect. 

Figures 2 and 3 show the effect on the inter- 
facial temperature distribution of varying the 

P&let number for /3 = Ql and fi = 10, res- 
pectively for a fairly large length to thic~~s 
ratio (1OO:l). The former figure shows that as 
the PC&t number increases the effects of axial 
conduction in the wall become insignificant, and 
the limiting interfacial temperature profile pre- 
dicted for a constant wall heat flux is approached 
When p is large, however, axial conduction in 
the wall greatly effects the interfacial tempera- 
ture distribution and the heat flux through the 
wall. Figure 3 shows that at even relatively large 
values of the P&let number the constant heat 

p=o4, 8,/L.O.OI 

---- Pe = too0 
-- Pe-2000 
----- PC = 4000 

- No axial conduction 

Dimensionless distance. E=x/~I I% 

FIG. 2. The effect of axial conduction in the wall on the interracial 
temperature profile for small fi and for various Ptsclkt numbers, 

peo.0, 62/L *O,Ol 

--- Pe =400 

-..- Pe = too0 

-- Pe =2000 

---- Pe =4000 

- No axial conduction 

1’ 
o,30 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ i 

1 , 3 ! I i , 
0.1 0.2 0.3 o-4 

Dimensionless distance.<= X/6, F’e 

FK 3. The effect of axial conduction in the wall on the interfacial 
temperature profile for large fi and for various PBcl6t numbers. 
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flux temperature distribution is not attained. 
The curve for a PC& number of 400 in Fig. 3 
approaches the curve for no axial conduction 
only for values of the dimensionless distance 
from the leading edge that are much greater than 
the range of the figure. For a specified PtclCt 
number and /J the thickness to length ratio of 
the wall has the effect on the interfacial tempera- 
tuK: shown in Fig. 4. As expected, axial con- 
duction in the wall is less significant as the wall 
thickness decreases. 

Equation (22) was found to be a rapidly con- 
vergent series, for the order of the polynomial 
selected had no apparent effect on the solution 
for polynomials of second order or greater, but 
the results presented here are for third order 
polynomials. 

Figures 5 and 6 compare the analysis neg- 
lecting axial conduction in the wall, the present 
analysis and the experimental data of Davis and 
Cooper. The effect of axial conduction in the 
wall is to increase the temperature near the 

/3=I~O,Pe=2000 

- 82/L.001 
- - 82/L =005 
----- tS2/L .O.lO 

--- 8*/L =0.20 

-No axial conduction 

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 4 ’ ’ ’ ’ ’ ’ ’ ’ 0.1 0.2 0.3 0.4 

Dimensionless distance, [=x/8, PC 

FIG. 4. The effect of axial conduction in the wall on the interfacial 
temperature profile for variotis values of 6,/L. 

In the ~lc~atio~ for Figs 2-4 and those that 
follow it was found that the collocation tech- 
niques used to obtain the coefficients of equation 
(21) was economical of computer time, but the 
coefficients and the resulting interfacial tempera- 
ture profiles depend slightly on the collocation 
points selected for the evaluation of the #Ax) 
functions. The curves shown in Figs. 2-6 should 
actually be considered to be narrow bands, the. 
maximum and minimum deviations from the 
lines shown being approximately 2 per cent. 
Witbin these limits the collation points could 
be varied considerably, for the calculations were 
primarily affected by the collocation point 
nearest the leading edge. 

leading edge over that predicted for a constant 
heat flux at the interface, and to lower the 
temperature slightly in the downstream portion. 
Differences between the analysis and experi- 
mental data can be attributed to two effects. 
First, there are experimental errors involved as 
indicated in [83 and second, the analysis does 
not account for small heat losses through the 
ends of the block The results of the present 
analysis are in reasonably good agreement with 
the measured interfacial temperatures. Some- 
what poorer agreement is obtained in a com- 
parison of the predicted and measured local 
Nusselt numbers, however, for the Nusselt 
numbers calculated from the experimental data 
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-Neglecting axial conduction 
Run Experiment Analysis 

1-f 0 ---- 

22 . -- 

FIG. 5. A comparison of predicted interfacial temperature 
profiles with experimental data. 

- Neglecting axial conduction 
Run Experiment Analysis 
2fj o --- 

27 . --- 

005 0.10 045 0.20 025 O-30 0.35 

Dimensionless distance, c= x/6, P.3 

FIG. 6. A comparison of predicted interfacial temperature 
prafites with experimental data. 
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are more subject to errors in the measurements 
than are the dimensionless temperature profiles. 
Figure 7 is a comparison among the experimental 
results and the Nusselt numbers predicted by 

- Neglecting axial conduction 

Run Experiment Analysis 

_____ 

l.Oo 
I I I I 

mo5 0.10 0.15 0.20 0.25 

Dimensionless distance, E 

FIG. 7. A comparison of predicted Nusselt numbers with 
experimental data. 

neglecting and by accounting for the axial 
conduction The Nusselt number for the thin 
film flow may be defined by 

s,fl 
aY y=o 404 

N” = - (To - T,) = k,(T, - y-,) (24) 
where the subscript m refers to the mixed mean 
temperature and q. is the local heat flux at the 
solid-fluid interface. When a constant heat flux, 
q. = q, = constant, is involved, i.e. negligible 
axial conduction, the Nusselt number can be 
written in terms of the appropriate dimension- 
less temperature for that case, 8 = (T - Te)/ 

(q,A/M, to give 

Nu = l/(8, - e,). (25) 

The effect uf the axial conduction, shown in Fig. 
7, is to lower the Nusselt numbers relative to 
those predicted for a constant heat flux at the 
solid-fluid interface. For the relatively short 

heat-transfer section of Davis and Cooper the 
asymptotic value of the Nusselt number of 15 
was not attained. 

CONCLUSIONS 

Axial conduction in the wall of a heat- 
transfer apparatus can significantly affect the 
temperature field in the fluid phase and lower 
the Nusselt number associated with the heat 
transfer. The PC& number of the fluid, Pe, the 
thickness to length ratio ofthe wall, 6,/L, and the 
dimensionless group of variables, B = k26,/k,L, 
are the important parameters in determining 
the effects of the axial conduction. Increasing /I 
and 6,/L increases the importance of axial 
conduction whereas increasing Pe decreases it. 

The analysis of axial conduction in the wall 
developed above and applied to the system 
studied by Davis and Cooper shows that the 
experimental deviations of the wall temperature 
profile from the profile predicted for the 
constant heat flux boundary condition are in 

large measure due to axial conduction in the 
test section wall. 
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LES EFFETS DE LA C~~DUCT~~~ AXIALE DANS LA PAROK SUR LE TRANSPORT DE 
CHALEUR AVEC UN &UULEMENT LANINAIRE 

R&m&-Les effets de la conduction de la paroi sur des exp6riences de transport de chaleur en tkoulement 
laminaire et en rkgime permanent sont examit&, et une analyse du transport de chaleur avec conduction 
axiaie dans la paroi Iimitant un fluide en ~~oul~rnent l~inaire est &labor&e paur dkterminer les e&ts de la 
conduction dans la paroi sur le transport de chaleur aver un Bcoulement de Poiseuille-Couette entre des 
plaques parall&Ies. Les param~tr~ qni d&erminent ~irnpo~an~ relative de la conduction axiale sent le 
nombre de P6cIet du fluide, Ie rapport 6paisseur sut longueur de la pa.roi et Ie param&re - K2bl/klL. 
L’analyse de I’&coulement de Couette et les expbiences qui correspondent au transpoti de chaieur avec 
~~eo~ernent de Couette sent en bon accord, et la d~strjbation de temp&ature ~nte~aGj~e et les nombres 
de Nusselt iocaux obtenus en tenant compte de la conduction axiale sont cornparEs avec les rCsultats 

d&ermin& en n&gligeant Ia conduction axiaie. 

DER EINFLUSS ACHSIALER WANDBEDINCUNGEN AUF DEN 
W~RME~~ERGANG BE1 LAMlNARSTRu~U~G 

~~enf~~g-~s wird der Einfiuss der ~rmele~tang in der Wand auf die Versnche mit stationiirem 
W~rne~ber~a~ bei faminarer Str~mun~ untersucht. Es wird eine Berechnungsm~thod~ fiir den Wiirme- 
Gbergang mit axiafer Leitxmg in den Wladen, die eine faminar stramende Fliissigkeit ~gren~e~ entwickeli, 
urn den Einfluss der Leitung in der Wand auf den ~~me~bergan~ bei Poiseuille-C~uetta-Str~mung 
zwisehen parallelen Platten zu bestimmen. Ats Parameter, welche die relative Bedeutung der axiafen Leitung 
ausdriicken, wurden die Peclet-Zahl der Fliissigkeit, das VerMltnis der Dicke zur Liinge der Wand und der 
Parameter Kz St/ktL gefunden. Die Ber~~nun~smethode der CouetteStr6mung und die Versuche, die 
dem W~~e~~rga~~ bei Couette-Str~m~ng entsprechen, zeigen gute ~b~reinstimmun~. 

Die Temperat~rv~rteilung zwischen den Wtinden und die lokalen Nusselt-Zahlen bei Beriicksicbtigung 
der axialen Leitung werden verglichen mit Ergebnissen bei denen die axiale Leitung vernachl5ssigt wurde. 


